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Abstract  
 

Important financial data such as stock prices, index prices, exchange rates change 

on a daily basis. These changes are brought about by effects from various 

macroeconomic factors, trading patterns and general public sentiment. The ability 

to forecast in such cases is highly desirable as it allows potential investors to 

identify profitable investments, and inform investors when it is ideal to close out 

positions to lock in profits. As this data continuously changes over time, it can be 

represented as a time-variant signal. Processing techniques applicable to such time 

variant systems can provide important information relevant to forecasting. It is 

possible that signal decomposition techniques such as Wavelet Transforms may 

provide superior capacity to forecast time series signals such as financial data. The 

same is to be verified in this study. Before signal decomposition techniques are 

analysed, traditional forecasting techniques were studied and implemented, to note 

the shortcomings of such models. Statistical approaches to treating financial data 

have proven useful and deliver statistically significant results. However, there is 

reason to believe a technical approach using analytical tools having properties 

which present a significant advantage in treatment of financial data may provide 

useful information regarding the data, thereby procuring valuable information that 

is required as inputs for artificial neural networks, which help accurately predict 

future behaviour of the observed securities. This report comprises of a summary of 

such relevant tools and techniques to better analyse financial data. 

  



 
5 

 

Table of Contents 
 

Acknowledgements ....................................................................................................................... 2 

Certificate ...................................................................................................................................... 3 

Abstract ......................................................................................................................................... 4 

Summary of Statistical Approach ............................................................................................... 6 

Technical Approach ..................................................................................................................... 7 

Fourier Transforms ..................................................................................................................... 7 

Alternatives to Fourier Transforms ............................................................................................. 8 

Wavelet Transforms .................................................................................................................... 9 

Mathematical Definitions ........................................................................................................... 12 

Gabor Transform ...................................................................................................................... 12 

Short Time Fourier Transform .................................................................................................. 12 

Wigner Distribution .................................................................................................................. 13 

Page Distribution ...................................................................................................................... 13 

Wavelets in Finance .................................................................................................................... 14 

Hilbert Transforms using Market Modes ................................................................................ 17 

Market Modes ........................................................................................................................... 17 

Hilbert Transform ..................................................................................................................... 19 

Conclusions ................................................................................................................................. 21 

References ................................................................................................................................... 22 

 

  



 
6 

 

Summary of Statistical Approach 
 

Traditional econometric models were analysed and employed to fit time series data 

such as USDINR exchange rates. The models were then used to generate forecasts 

for the time series by using univariate forecasting methods. Autocorrelation was 

observed among residuals of values forecasted by Holt’s Exponential forecasting, 

which signified a scope for improvement in the model.  

ARIMA model forecasting is considered superior to Exponential forecasting for the 

reason that it employs no assumption regarding the residuals of errors as assumed 

by the exponential forecasting methods. On fitting the data in the appropriate 

ARIMA model, it was deduced that the data closely replicated an ARMA (2, 2) 

model, where the current value of the series depended on the previous two lagged 

values of itself, as well as the residuals of the lagged values. Forecasts of this model 

were also analysed, and some autocorrelation among residuals was observed. A 

slightly skewed normal distribution of residuals of forecasts once again suggested 

that a better model may be fitted. 

Traditional econometric models of forecasting are limited in their scope to 

perfectly map and replicate possible trends in data. The authors believe some 

decomposition techniques employed on time-variant systems may help deduce 

further information regarding financial signals, which may provide more accurate 

forecasts. 
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Technical Approach 
 

Fourier Transforms 
 

Fourier transform theory states a given time series can equivalently be characterized 

either in time domain or in frequency domain. In general, transformation of the 

signal representation between the time domain and the frequency domain (also 

known as the spectral domain) is achieved by computing the Fourier transform (FT) 

and the inverse Fourier transform (IFT) as given in equations (1.a) and (1.b), 

respectively 
 

 
 
where x(t) is the time function evaluated at time t, X (f) is the Fourier transform 

evaluated at frequency f, and j =-1 is the unit imaginary number.  

 

For discrete-time problems, the discrete Fourier transform (DFT) and the inverse 

discrete Fourier transform (IDFT) need to be used instead of the continuous time FT 

and IFT pair given in Equation 1. The Fast Fourier Transform algorithm (FFT) and 

its inverse (IFFT) are computationally optimized signal processing tools that can be 

used to compute Fourier transform pairs for discrete signals. While the 

characterization of discrete data in time domain requires the techniques for the 

analysis of time series, characterization in frequency domain calls for the techniques 

of discrete spectral analysis, both producing essentially the same results.  
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Alternatives to Fourier Transforms 
 
The spectral content of the series varies as time progresses, rendering the 

conventional Fourier theory inadequate to fully describe the cyclical characteristics 

of the series. The joint Time-Frequency Representation (TFR) techniques overcome 

this problem as they are capable of analyzing a given function of time (continuous 

or discrete) in time domain and in frequency domain simultaneously. 
 
Both continuous and discrete Fourier transforms have proved indispensable as data 

analysis tools for stationary signals. Yet, if the statistical properties of a time signal 

are time-variant and hence, its spectral content varies as time progresses, the 

conventional Fourier theory becomes inadequate to fully describe the signal 

characteristics. The TFR techniques overcome this problem as they are capable of 

analyzing a given function of time (continuous or discrete) in time domain and in 

frequency domain simultaneously. In other words, TFRs can characterize a given 

time signal in the two-dimensional joint time-frequency domain enabling 

localization both in time and frequency within the resolution limits allowed by the 

uncertainty principle. 

Time series may be analyzed either in the time domain or in the spectral (or 

frequency) domain, both producing essentially the same results. Transformation of 

the signal representation from one domain to another is achieved by computing the 

Fourier transform (FT) and the inverse Fourier transform (IFT). If the spectral 

content of a given signal varies as time progresses, however, the conventional 

Fourier theory fails to fully describe the contribution of arbitrarily chosen spectral 

components over certain time bands. The time frequency representation (TFR) 

techniques have emerged as viable solutions to this challenging problem as they 

analyze a given function of time (continuous or discrete) in time domain and in 
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frequency domain simultaneously. Gabor transform (GT), short time Fourier 

transform (STFT) and Wavelet transform (WT) are linear time-frequency 

representations whereas Wigner distribution (WD), Spectrogram (magnitude square 

of STFT), Scalogram (magnitude square of WT), Choi-Williams distribution (CWD) 

and Page distribution (PD) are some of the well-known quadratic time-frequency 

representations. 
 

Wavelet Transforms 
 

Wavelets have had popular usage in natural sciences, especially in earth sciences, 

and the past couple decades have seen usage of wavelet methods in engineering as 

well. However, the first applications of wavelets in economics and finance emerged 

only recently, despite its evident suitability for this discipline. One of the 

fundamental advantages of wavelet analysis over Fourier analysis is the capability 

to decompose time series into different components by virtue of time and frequency 

localization properties it holds. An observed time series may contain several 

structures, each occurring on a different time scale. Wavelet techniques possess an 

inherent ability to decompose this kind of time series into several sub-series which 

may be associated with a particular time scale. The problem of Fourier analysis is 

that the time information is lost completely. The assumption of "natural" periods and 

stationarity that are inherent in the Fourier methods are also problematic. 

A wavelet is a rapidly decaying wave like oscillation that has zero mean. 

Unlike sinusoids which extend to infinity a wavelet exists for a finite duration.  

Wavelets come in wide range of shapes and sizes. The availability of a wide range 

of wavelets is a key strength of wavelet analysis. 

 

There are two important wavelet concepts – scaling and shifting. 
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Scaling refers to the process of stretching or shrinking this signal in time with the 

following equation. –  

 

𝜓(𝑡 ∕ 𝑠)𝑠 > 0 
 
S is the scaling factor and corresponds to how much the wavelet is scaled in time. 

The scale factor is inversely proportional to frequency. For wavelets, there is a 

reciprocal relationship between the scale and the frequency with a constant of 

proportionality. This constant of proportionality is called the center frequency of the 

wavelet. This is because, unlike the sine wave, the wavelet has a band pass 

characteristic in the frequency domain. Mathematically, the equivalent frequency is 

defined using this equation –  
 

𝐹!" =
𝐶#
𝑠𝛿𝑡 

 
Therefore, when you scale a wavelet by a factor of 2, it results in reducing the 

equivalent frequency by an octave. A larger scale factor results in a stretched 

wavelet, which corresponds to a lower frequency, and vice versa. A stretched 

wavelet helps in capturing the slowly varying changes in a signal, while a 

compressed wavelet helps in capturing the abrupt changes.  

 

Shifting a wavelet simply means delaying or advancing the onset of the wavelet 

along the length of the signal. A shifted wavelet represented using this notation 

means the wave is shifted and centered at k. We need to shift the wavelet to align 

with the feature we are looking for in the signal. The two major transforms in wavelet 

analysis are continuous and discrete wavelet transforms. Continuous wavelet 
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analysis is useful in time frequency analysis and filtering of time localized frequency 

components.  

 

One can use this transform to obtain a simultaneous time frequency analysis of a 

signal. Analytical wavelets are best suited for time frequency analysis as these 

wavelets do not have negative frequency components. Examples of analytical 

wavelets that are suitable for continuous wavelet analysis are Morse wavelets, bump 

wavelets and analytic Morlet wavelet. The output of cwt are coefficients which are 

functions of scale or frequency and time. When you scale a wavelet by a factor of 2, 

it results in reducing the equivalent frequency by an octave. In cwt you have the 

added flexibility to analyze the signal at intermediary scales within each octave. This 

allows for fine scale analysis. This parameter is referred to as the number of scales 

per octave. The higher the number of scales per octave, the finer the scale 

discretization. Typical values for this parameter are 10, 12, 16, and 32. The scales 

are multiplied by the sampling interval to obtain a physical significance. Each scaled 

wavelet is shifted in time along the entire length of the signal and is compared with 

the original signal. This process can be repeated for all the scales resulting in 

coefficients that are a function of wavelet scale and shift parameters. For example, 

a signal with 1000 samples analyzed with 20 scales results in 20000 coefficients. In 

this way you can better characterize oscillatory behavior in signals with the 

continuous wavelet transform. 
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Mathematical Definitions  
 
The mathematical definitions of GT, STFT, WD and PD are as follows: 
 
Gabor Transform 
 
The Gabor expansion coefficients Gx (n, k) of a given time signal x(t) are 

implicitly defined by 

 
 
being the basis functions of the expansion, which were originally taken to be time 

frequency shifted Gaussian functions by Gabor (1946), as the Gaussian functions are 

well concentrated both in time and frequency domain. Then, the expansion 

coefficient Gx (n, k) is expected to indicate the signal's time and frequency content 

around the point (nT, kF) in the joint time-frequency domain. 
 

Short Time Fourier Transform 
 
The STFT of a given time signal x(t) is computed by 

 

 
where g(t¢ - t) is the chosen window of analysis which is centered at t ¢ = t and the 

superscript * denotes complex conjugation. As implied by this definition, the STFT 
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of a signal may be interpreted as the local Fourier transform of the signal around 

the analysis time t. 
 

Wigner Distribution 
The auto-Wigner distribution of a given time signal x(t) is given by 
 

 
 
The WD is a real-valued quadratic TFR preserving time shifts and frequency shifts 

of the signal. The frequency (time) integral of the WD corresponds to the signal's 

instantaneous power (spectral energy density) as the WD satisfies the so-called 

marginals. As a matter of fact, the WD is the only quadratic TFR satisfying all of 

the desired properties of the energetic time-frequency representations.  
 

Page Distribution 
 
The Page distribution of a given time signal x(t) is defined as 

 
The PD is also an energetic, shift-invariant, quadratic TFR like the WD. Most of the 

desirable properties satisfied by the WD are also satisfied by the PD except for a few 

of them such as the property of having a finite frequency support. 
  



 
14 

 

Wavelets in Finance 
 
The following presents a literature review of wavelet applications in finance. It 

predominantly focuses on decomposition applications of wavelet methods, while 

also shedding some light on applications to interdependence studies with wavelets. 
 
Capobianco (2004) applies wavelet methods to the multiresolution analysis of high 

frequency Nikkei stock index data, by applying the matching pursuit algorithm 

suggested by Mallat and Zhang (1993). He argues that the algorithm suits financial 

data, and shows how the wavelet matching pursuit algorithm can be used to uncover 

hidden periodic components.  

Gencay et al (2001a) used wavelet methods to investigate the scaling properties of 

foreign exchange rates. They found that foreign exchange rate volatilities are 

described by different scaling laws on different horizons. They too used the maximal 

overlap discrete wavelet transform estimator of the wavelet variance to decompose 

variance of the process to come across this observation. Gencay et al. (2003) 

decompose a given time series on a scale-by-scale basis. The wavelet variance of the 

market return and the wavelet covariance between the market return and a portfolio 

are calculate on each scale to obtain an estimate of a portfolio’s beta. It was 

concluded that the estimations of the CAPM are more relevant in the medium and 

long run than on short time horizons. Gencay et al. (2004) present a powerful method 

to analyze the relationship between stock market returns and volatility on multiple 

time scales using wavelet decomposition. The leverage effect was found to be weak 

at high frequencies but becomes prominent at low frequencies. It was also found that 

positive correlation between the current volatility and future returns becomes 

dominant on the timescales of one day and higher, lending evidence that risk and 

return are positively correlated.  
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The frequency components of European business cycles were analyzed by Crowley 

and Lee (2005) using wavelet multiresolution analysis. They use a real GDP as a 

proxy for the business activity of European countries. The analysis is performed 

using the maximal overlap discrete wavelet transform, and significant differences 

between the countries is found, where the degree of integration varies significantly. 

They also found out that most of the energy in these economic time series can be 

found in longer term fluctuations. Also, indications were found that recessions are a 

result of a simultaneous dip in growth cycles at all frequencies.  

Vuorenmaa (2005, 2006) analyses stock market volatility using the maximal overlap 

discrete wavelet transform. He observes that the global scaling laws and long 

memory of stock’s volatility may not be time-invariant.  
 

Wavelets have also been widely used to study interdependence of economic and 

financial time series. The studies presented in the following have also decomposition 

aspects but their main aspect is in the interdependence of processes.  

In & Kim (2006c, 2007), In et al. (2008) and Kim & In (2005, 2006, 2007) have 

conducted many studies in finance using the wavelet variance, wavelet correlation 

and cross-correlation. Kim & In (2005) study the relationship between stock markets 

and inflation using the MODWT estimator of the wavelet correlation. They conclude 

that there is a positive relationship between stock returns and inflation on a scale of 

one month and on a scale of 128 months, and a negative relationship between these 

scales. Furthermore, they stress how the wavelet-based scale analysis is of utmost 

importance in the economics studies since their results solve many puzzles around 

the Fisher hypothesis previously noted in literature. In et al. (2008) study the 

performance of US mutual funds using wavelet multi-scaling methods and the 

Jensen’s alpha. The results reveal that none of the funds are dominant over all time-
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scales. In & Kim (2006c) study the relationship between stock and futures markets 

with the MODWT based estimator of wavelet cross-correlation. There is a feedback 

relationship between the stock and the futures markets on every scale. The results 

also reveal that correlation increases as time scale increases. In & Kim (2007) 

examine how well the Fama- French factor model works on different time scales. 

They conclude that the SMB (small capital business minus big capital business) and 

the HML (high book-to market minus low book-to-market) share much of the 

information with alternative investment opportunities in the long run but not in the 

short run. Therefore, the importance of scale dimension is verified again. Kim & In 

(2006) find that correlation between industry returns and inflation does not vary 

along with the scale. Furthermore, they find indications that industry returns can be 

used as a hedge against inflation, depending on the particular industry. 
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Hilbert Transforms using Market Modes 
 
Market Modes 
 
Much research has been done to prove that the market is indeed efficient. However, 

the fact that there exists a number of traders who are continuously successful is 

adequate proof that markets are not necessarily completely efficient. The failure of 

the efficiency hypothesis in several cases is sufficient evidence to invalidate the 

hypothesis itself. 

 

Classical efficient market models are often concerned with the adjustment of 

security prices to three information subsets. Weak form tests comprise the first 

subset, in which we are simply given the historical prices. The second subset is semi-

strong form tests that concern themselves with whether prices efficiently adjust to 

other publicly available information. Strong form tests, the third subset, are 

concerned with whether investors have monopolistic access to any information 

relevant to price formation. The general conclusion, particularly for the weak form 

tests, is that the markets can be only marginally profitable to a trader. In fact, only 

the strong form tests are viewed as benchmarks against deviations from market 

efficiency. These strong form tests point to activities such as insider trading and the 

market-making function of specialists. 

 

The efficient-markets-model statement that the price fully reflects available 

information implies that successive price changes are independent of one another. 

In addition, it has usually been assumed that successive changes are identically 

distributed. Together, these two hypotheses constitute the Random Walk Model, 

which says that the conditional and marginal probability distributions of an 
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independent random variable are identical. In addition, it says that the probability 

density function must be the same for all time. The simplest modification of the 

Random Walk is to allow the coin toss to determine the persistence of motion. This 

is called the Drunkard’s Walk solution. In other words, with probability p the 

drunkard makes his next step in the same direction as the last one, and with 

probability l-p he makes a move in the opposite direction.  The Drunkard’s Walk 

solution can describe two market conditions. In the first condition, the probability is 

evenly divided between stepping to the right or the left, resulting in the Trend 

Mode. The second condition, the probability of motion direction is skewed, results 

in the Cycle Mode.  

 

The market only has a single dominant cycle most of the time. When multiple cycles 

are simultaneously present, they are generally harmonically related. This is not to 

say that nonharmonic simultaneous cycles cannot exist-just that they are rare enough 

to be discounted in simplified models of market action. The general observation of 

a single dominant cycle tends to support the notion that the natural response to a 

disturbance is monotonic harmonic motion. A more complete model of the market 

can be achieved by dividing the market action into a Cycle Mode and a Trend Mode. 

By having only two modes in our market model, we can switch trading strategies 

back and forth between them, using the more appropriate tool according to our 

situation.  
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Hilbert Transform 
 
The Hilbert Transform is a procedure to create complex signals from the simple chart 

data familiar to all traders. Once we have the complex signals, we can compute 

indicators that are more accurate and responsive than those computed using 

conventional techniques. 

 

When data are sampled at a sampling frequency, that sampling frequency acts like a 

radio carrier signal. That is, the real data being sampled are heterodyned into upper 

and lower sidebands of the sampling frequency. Mathematically, heterodyning is 

multiplying two frequencies (and then filtering to select the desired output). So, if 

we have a baseband data frequency of fb, the heterodyning can be described as the 

product of two signals. By a trigonometric identity, this product results in the sum 

and difference frequencies as the lower sideband can be considered as a negative 

frequency relative to the sampling frequency, and the upper sideband can be 

considered as a positive frequency relative to the sampling frequency. Furthermore, 

every harmonic of the sampling frequency exists. Each harmonic also has an upper 

and lower sideband containing the baseband signals. Since the lower sideband of the 

sampling frequency exists, it could extend down into the baseband range of 

frequencies.  This is called the Nyquist sampling criteria. In trading, this means the 

absolute shortest period we can use is a 2-bar cycle, or a frequency of 0.5 cycles per 

bar. The sampling frequency can be weekly, daily, hourly, and so on, but the shortest 

period we can consider in any time frame is a 2-bar cycle. We can synthesize the 

analytic signal by summing the two complex signals. When the real component is 

summed with the imaginary component in the equations, the two complex signals 

can be called the Inphase (i.e., the Cosine) component and the Quadrature (i.e., the 

Sine) component. Quadrature means being rotated by 90 degrees.  
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We can approximate the Hilbert Transformer by truncating the extent. For example, 

we could truncate the filter at n = 7. In this case, where the detrended Price is 

represented by P, the Quadrature component (Q) of the Hilbert Transform can be 

written as 

 
Q = (P/7 + P[2]/5 + P[4]/3 + P[6] – P[8] – P[10]/3 – P[12]/5 – 

P[14]/7)/(1 + 1/3 + 1/5 + 1/7) 
 
This short Hilbert Transformer has a lag of only 3 bars. 

 

We attempt to construct a Hilbert Transformer in Python with assistance from John 

Ehler’s Rocket Science for Traders. 
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Conclusions 
 

The shortcomings of the Fourier Transform in analysing time variant financial data 

are overcome by various other transformation tools such as Wavelets and Hilbert 

Transforms. These transforms allow localisation of frequency in time and space, 

thereby providing an advantage over Fourier transforms. This information is 

important and relevant in the case of financial analysis, as it allows the analyst to 

separate a time series of financial data into multiple individual series each with its 

individual characteristics. This multiresolution allows an analyst to localise 

significant events which may allow her to extract information regarding the 

recurrence of such events. Wavelet and Hilbert transform resolution also allow 

analysts to identify and separate various trends and cycles in financial data. As 

information is crucial in terms of performing consistently profitable trades, 

knowledge about repetitions in cycles and trends is extremely useful to an analyst or 

a trader. Derivation of frequencies of such trends and cycles can provide the analyst 

with the necessary inputs one may need to build an artificial neural network to 

predict the movement of the stock, index or security under observation.  



 
22 

 

References 
 

1. Box, G.E.P., Jenkins, G.M., & Reinsel, G.C. 1994. Time-Series Analysis, 

Forecasting and Control. Holden-Day, San Francisco. 

2. Dahlhaus, R. 1997. Fitting time series models to nonstationary processes. 

Annals of Statistics. 

3. Drakakis, Konstantinos. Application of Signal Processing to the Analysis of 

Financial Data 

4. Drakakis, Konstantinos. 2008. Analysis of Financial Data through Signal 

Processing Techniques 

5. Ehler, John. Rocket Science for Traders 

6. Grandell, Jan. Time Series Analysis 

7. Jothimani, D., Shankar, R., Yadav, S.S., 2015. Discrete Wavelet Transform-

Based Prediction of Stock Index 

8. Ranta, Mikko. 2010. Wavelet Multiresolution Analysis of Financial Time 

Series 

9. Tsay, R.S. 2002. Analysis of Financial Time Series. Wiley, New York. 

10. https://www.statmethods.net/advstats/timeseries.html 

11. https://datascienceplus.com/time-series-analysis-using-arima-model-in-r/ 

12. https://www.thoughtco.com/the-augmented-dickey-fuller-test-1145985 

13.  https://www.analyticsvidhya.com/blog/2018/09/non-stationary-time-series-

python 

 


